MATHEMAT

Mob.: 9470844028 9546359990

Ram Rajya More, Siwan

XIth, XIIth, TARGET IIT-JEE (MAIN + ADVANCE) & COMPETITIVE EXAM. FOR XII (PQRS)

FUNCTIONS

& Their Properties

	CONTENTS
Key Concept-I	***************************************
Exercise-I	
Exercise-II	
Exercise-III	
	Solutions of Exercise
Page	***************************************

THINGS TO REMEMBER

- 1. Let A and B be two non-empty sets. Then, a subset f of A × B is a function from A to B, if
 - (i) for each a A there exists $b \in B$ such that $(a, \in b) \in f$.
 - (ii) $(a, b) \in f$ and $(a, c) \in f \Rightarrow b = c$

In other words, a subset f of $A \times B$ is a function from A to B, if each element of A appears in some ordered pair in f and no two ordered pairs in f have the same first element.

- 2. Let A and B be two non-empty sets. Then, a function f from A to B associates every element of A to a unique element of B. The set A is called the domain of f and the set B is known as its codomain. The set of images of elements of set A is known as the range of f.
- 3. If $f : A \to B$ is a function, then $x = y \Rightarrow f(x) = f(y)$ for all $x, y \in A$.
- 4. A function $f: A \rightarrow B$ is a one-one function or an injection, if

$$\begin{array}{ll} f(x)=f(y)\Rightarrow x=y & \text{for all } x,\,y\in A\\ \text{or, } x\neq y\Rightarrow f(x)\neq f(y) & \text{for all } x,\,y\in A. \end{array}$$

- 5. A function $f: A \to B$ is an onto function or a surjection, if range (f) = co-domain (f).
- 6. Let A and B be two finite sets and $f: A \rightarrow B$ be a function.
 - (i) If f is an injection, then $n(A) \le n(B)$
 - (ii) If f is a surjection, then $n(A) \ge n(B)$
 - (iii) If f is a bijection, then n(A) = n(B).
- 7. If A and B be two finite sets and $f: A \rightarrow B$ be a function.
 - (i) Number of functions from A to $B = n^m$.
 - (ii) Number of one—one functions from A to B = $\begin{cases} {}^{n}C_{m} \times mf, if, n \ge m \\ 0, if n < m \end{cases}$
 - (iii) Number of onto functions from A to B = $\begin{cases} \sum_{T=1}^{n} (-1)^{n-r} & ^{n}C_{m} \times m \, f, if, n \geq m \\ & 0, if \, m < n \end{cases}$
 - (iv) Number of one-one and onto functions from A to B = $\begin{cases} n f, \text{if } m = n \\ 0, \text{if } m \neq n \end{cases}$
- 8. If a function $f: A \to B$ is not an onto function, then $f: A \to f(A)$ is always an onto function.
- 9. The composition of two bijections is a bijection.
- 10. If $f: A \to B$ is a bijection, then $g: B \to A$ is inverse of f, iff $f(x) = y \Leftrightarrow g(y) = x$
 - or, $gof = I_A$ and $fog = I_B$.
- 11. Let $f: A \to B$ and $g: b \to A$ be two functions.
 - (i) If $gof = I_A$ and f is an injection, then g is a surjection.
 - (ii) If $fog = I_B^A$ and f is a surjection, then g is an injection.
- 12. Let $f: A \to B$ and $g: B \to C$ be two functions. Then
 - (i) $gof: A \rightarrow C$ is onto $\Rightarrow g: B \rightarrow C$ is onto.
 - (ii) $gof: A \rightarrow C$ is one-one $\Rightarrow g: A \rightarrow B$ is one-one

- (iii) $gof: A \to C$ is onto and $g: B \to C$ is one-one $\Rightarrow f: A \to B$ is onto.
- (iv) gof: $A \to C$ is one-one and $f: A \to C$ is onto $\Rightarrow f: B \to C$ is one-one.

EXERCISE-1

- Let A and B be two non-empty sets. A relation f from A to B i.e., a sub set of A × B is called a function (or a mapping or a map) from A to B, if
 - (i) for each $a \in f A$ there exists $b \in B$ such that $(a, b) \in f$
 - (ii) $(a, b) \in f$ and $(a, c) \in f \Rightarrow b = c$.
- 2. Let A and B be two non-empty sets. Then a function. 'f' from set A to set B is a rule or method or correspondence which associates elements of set A to elements of set B such that:
 - (i) all elements of set A are associated to elements in set B.
 - (ii) an element of set A is associated to a unique element in set B.

In other words, a function 'f' from a set A to a set B associates each element of set A to a unique element of B.

3. If k is a fixed real number, then a function f(x) given by

$$f(x) = k \text{ for all } x \in R$$

is called a constant function.

4. The function that associated each real number to itself is called the identity function and is usually denoted by I.

Thus, the function $I: R \rightarrow R$ defined by

$$I(x) = x \text{ for all } x \in R$$

is called the identity function.

5. The function f(x) defined by

$$f(x) = \mid x \mid = \begin{cases} x, & \text{when } x \ge 0 \\ -x, & \text{when } x < 0 \end{cases}$$

is called the modulus function.

6. For any real number x, we use the symbol [x] or, \[\text{x} \] to denote the greatest integer less than or equal to x. For example,

$$[2.75] = 2$$
, $[3]$, $[0.74] = 0$, $[-7.45] = -8$ etc.

The function $f: R \to R$ defined by

$$f(x) = [x]$$
 for all $x \in R$

is called the greatest integer function or the floor function.

- 7. If n is an integer and x is a real number between n and n + 1, then
 - (i) [-n] = -[n]
 - (ii) [x + k] = [x] + k for any integer k.
 - (iii) [-x] = -[x] 1
 - (iv) $[x] + [-x] = \begin{cases} -1, & \text{if } x \notin \mathbb{Z} \\ 0, & \text{if } x \in \mathbb{Z} \end{cases}$

(v)
$$[x] - [-x] = \begin{cases} 2[x]+1, & \text{if } x \notin \mathbb{Z} \\ 2[x], & \text{if } x \in \mathbb{Z} \end{cases}$$

(vi)
$$[x] \ge k \Rightarrow x \ge k$$
, where $k \in Z$

(vii)
$$[x] \le k \Rightarrow x \le k + 1$$
, where $k \in \mathbb{Z}$

(viii)
$$[x] > k \Rightarrow x \ge k + 1$$
, where $k \in \mathbb{Z}$

(ix)
$$[x] < k \Rightarrow x < k$$
, where $k \in \mathbb{Z}$

(x)
$$[x + y] = [x] + [y + x - [x]]$$
 for all $x, y \in R$

(xi)
$$[x] + \left[x + \frac{1}{n}\right] + \left[x + \frac{2}{n}\right] + \dots + \left[x + \frac{n-1}{n}\right] = [nx], n \in \mathbb{N}$$

For any real number x we use the symbol $\lceil x \rceil$ to the smallest integer than or equal to x. 8. For example,

$$\lceil 4.7 \rceil = 5, \lceil -7.2 \rceil = -7, \lceil 5 \rceil = 5, \lceil 0.75 \rceil = 1$$
 etc.

The function $f: R \rightarrow R$ defined by

$$f(x) = \lceil x \rceil$$
 for all $x \in R$

is called the smallest integer function or the ceiling function.

9. Following are some properties of smallest integer function:

(i)
$$\lceil -n \rceil = -\lceil n \rceil$$
, where $n \in \mathbb{Z}$

(ii)
$$\lceil -X \rceil = -\lceil x \rceil + 1$$
, where $x \in R - Z$

(iii)
$$\lceil x + n \rceil = \lceil x \rceil + n$$
, where $x \in R - Z$ and $n \in Z$

(iv)
$$\lceil x \rceil = \lceil \Box - x \rceil = \begin{cases} -1, & \text{if } x \notin Z \\ 0, & \text{if } x \in Z \end{cases}$$

$$(v) \quad \lceil x \rceil + \lceil -x \rceil = \begin{cases} 2 \lceil x \rceil - 1, & \text{if } x \notin \mathbb{Z} \\ 2 \lceil x \rceil, & \text{if } x \in \mathbb{Z} \end{cases}$$

For any real number x, we use the symbol {x} to denote the fractional part or decimal part of x. For example,

$$[3.45] = 0.45, [-2.75] = 0.25, [-0.55] = 0.45, [3] = 0, [-7] = 0$$
 etc.

The function $f: R \to R$ defined by

$$f(x) = \{x\} \text{ for all } x \in R$$

is called the fractional part function.

The function f defined by 11.

$$f(x) = \begin{cases} \frac{|x|}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

or,
$$f(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, x = 0 \end{cases}$$

is called the signum function.

- 12. If a is a positive real number other than unity, then a function that associates each $x \in R$ to a^x is called the exponential function.
- 13. If a > 0 and $a \ne 1$, then the function defined by

$$f(x) = \log_a x, x > 0$$

is called the logarithmic function.

14. The function $f: R^+ \to R$ defined by

$$f(x) + \sqrt{x}$$

is called the square root function.

15. The function $f: R \to R$ defined by

$$f(x) = x^2$$

16. The function $f: R \to R$ defined by

$$f(x) = x^3$$

17. The function $f: R \to R$ defined by

$$f(x) = x^{1/3}$$

18. Let $f: D \to R$ ba a real function and α be a scalar (real number). Then the product α f is a function from D to R and is defined as

$$(\alpha f)(x) = \alpha f(x)$$
 for all $x \in D$.

- 19. Let $A = \{1, 2, 3\}$, $B = \{4, 5, 6, 7\}$ and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. Then, f(1) = 4, f(2) = 5 and f(3) = 6. Clearly, different elements of A have different images in B. So, f is a one-one function.
- 20. Show that the function $f: Z \to Z$ defined by $f(x) = x^2 + x$ or all $x \in Z$, is a many-one function.
- 21. Show that the function $f: N \to N$ given by f(1) = f(2) = 1 and f(x) = x 1 for every $x \ge 2$, is onto but not one—one.
- 22. Prove that $f: R \to R$, given by f(x) = 2x, is one—one and onto.
- 23. Show that the function $R \to R$, defined as $f(x) = x^2$, is neither one-one nor onto.
- 24. Show that $f: R \to R$, defined as $f(x) = x^3$, is a bijection.
- 25. Show that the function $f: R_0 \to R_0$, defined as $f(x) = \frac{1}{x}$, is one-one onto, where R_0 is the set of all non-zero real numbers. Is the result true, if the domain R_0 is replaced by N with co-domain being same as R_0 ?
- 26. Prove that the greatest integer function $f: R \to R$, given by f(x) = [x], is neither one—one nor onto, where [x] denotes the greatest integer less than or equal to x
- 27. Show that the modulus function $f: R \to R$, given by f(x) = |x| is neither one-one nor onto.

- 28. Show that the function $f: R \to R$ given by f(x) = ax + b, where $a, b \in R$, $a \ne 0$ is a bijection.
- 29. Let $A = R \{2\}$ and $B = r \{1\}$. If $f : A \to B$ is a mapping defined by $f(x) = \frac{x-1}{x-2}$, show that f is bijective.
- 30. Let A and B be two sets. Show that $f: A \times B \to B \times A$ defined by f(a, b) = (b, a) is a bijection.
- 31. Consider the identity function $I_N: N \to N$ defined as

$$I_N(x) = x \text{ for all } x \in N$$

Show that although I_N is onto but $I_N + I_N : N \rightarrow N$ defined as

$$(I_N + I_N)(x) = I_N(x) + I_N(x) = x + x = 2x$$

is not onto.

32. Let $f: X \to Y$ be a function. Define a relation R on X given by

$$R = \{(a, b) : f(a) = f(b)\}.$$

Show that R is an equivalence relation on X.

- 33. Classify the following functions as injection, surjection or bijection:
 - (i) $f: N \to N$ given by $f(x) = x^2$
 - (ii) $f: Z \to Z$ given by $f(x) = x^2$
 - (iii) $f: N \to N$ given by $f(x) = x^3$
 - (iv) $f: Z \to Z$ given by $f(x) = x^3$
 - (v) $f: R \rightarrow R$ defined by f(x) = |x|
 - (vi) $f: Z \to Z$ defined by $f(x) = x^2 + x$
 - (vii) $f: Z \to Z$ defined by f(x) = x 5
 - (viii) $f: R \to R$, defined by $f(x) = \sin x$
 - (ix $f: R \to R$, defined by $f(x) = x^3 + 1$
 - (x) $f: R \to R$, defined by $f(x) = x^3 x$
 - (xi) $f: R \to R$, defined by $f(x) = \sin^2 x + \cos^2 x$
 - (xii) $f: Q \{3\} \rightarrow Q$, defined by $f(x) = \frac{2x+3}{x-3}$
 - (xiii) $f: Q \rightarrow Q$, defined by $f(x) = x^3 + 1$
 - (xiv) f: R \rightarrow R, defined by f(x) = $5x^3 + 4$
 - (xv) $f: R \rightarrow R$, defined by f(x) = 3 4x
 - (xvi) $f: R \to R$, defined by $f(x) = 1 + x^2$
- 34. Show that the function $f: R (3) \rightarrow R (1)$ given by $f(x) = \frac{x-2}{x-3}$
- 35. Show that $f: R \to R$, given by f(x) = x [x], is neither one—one nor onto.
- 36. If $A = \{1, 2, 3\}$, show that a one—one function $f : A \rightarrow A$ must be onto.
- 37. If $A = \{1, 2, 3\}$, show that a onto function $f : A \rightarrow A$ must be one—one.

- Find the number of all onto functions from the set $A = \{1, 2, 3, ..., n\}$ to itself.
- Let $f: R \to R$; $f(x) = \sin x$ and $g: R \to R$; $g(x) = x^2$ find fog and gof.
- 40. Let $f: \{2, 3, 4, 5\} \rightarrow \{3, 4, 5, 9\}$ and $g: \{3, 4, 5, 9\} \rightarrow \{7, 11, 15\}$ be functions defined as f(2) = 3, f(3) = 4, f(4) = f(5) = 5and g(3) = g(4) = 7 and g(5) = g(9) = 11Find gof.
- Let $f: \{1, 3, 4\} \rightarrow \{1, 2, 5\}$ and $g: \{1, 2, 5\} \rightarrow \{1, 3\}$ be given by $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(1, 3), (2, 3), (5, 1)\}$. Write down gof.
- 42. Find gof and fog, if $f: R \to R$ and $g: R \to R$ are given by f(x) = |x| and g(x) = |5x 2|.
- If the functions f and g are given by $f = \{(1, 2), 3, 5\}$, $\{(4, 1)\}$ and $g = \{(2, 3), (5, 1), (1, 3)\}$, find range of f and g. Also write down fog and gof as sets of ordered pairs.
- 44. If the function $f: R \to R$ be given by $f(x) = x^2 + 2$ and $g: R \to R$ be given by $g(x) = \frac{x}{x-1}$. Find fog and gof.
- 45. If $f: R \left\{\frac{7}{5}\right\} \to R \left\{\frac{3}{5}\right\}$ be defined as $f(x) = \frac{3x+4}{5x-7}$ and $g: R \left\{\frac{3}{5}\right\} \to R \left\{\frac{7}{5}\right\}$ be defined as $g(x) = \frac{7x+4}{5x-3}$. Show that $gof = I_A$ and $fog = I_B$, where $B = R - \left\{\frac{3}{5}\right\}$ and $A = R - \left\{\frac{7}{5}\right\}$.
- If $f: R \to R$ is defined by $f(x) = x^2 3x + 2$, find f(f(x)).
- 47. Let $A = \{x \in \mathbb{R} : 0 \le x \le 1\}$. If $f : A \to \mathbb{R}$ is defined by

$$f(x) = \begin{cases} x, \text{if } x \in Q \\ 1 - x, \text{if } x \notin Q \end{cases}$$

then prove that fof (x) = x for all $x \in A$.

- Let $f: R \to R$ and $g: R \to R$ be two functions such that $f \circ g(x) = \sin x^2$ and $g \circ f(x) = \sin^2 x$. Then, find f(x) = g(x).
- Let $f: Z \to Z$ be defined by f(n) = 3n for all $n \in Z$ and $g: Z \to Z$ e defined by

$$g(n) = \begin{cases} \frac{n}{3}, & \text{if n is a multiple of 3} \\ 0, & \text{if n is not a multiple of 3} \end{cases}$$
 for all $n \in \mathbb{Z}$

Show that $gof = I_Z$ and $fog \neq I_Z$.

- 50. Let f, g and h be functions from R to R. Show that:
 - (f + g) oh = foh + goh
 - (ii) (fg) oh = (foh) (goh)

- 51. Let $f: R \to R$ be the signum function defined as $f(x) = \begin{cases} 1, x > 0 \\ 0, x = 0 \\ -1, x < 0 \end{cases}$
 - and $g: R \to R$ be the greatest integer function given by g(x) = [x]. Then, prove that fog and gof coincide in [-1, 0).
- 52. The composition of functions is not commutative i.e. fog \neq gof.
- 53. The compsition of functions is associative i.e. if f, g, h are three functions such that (fog)oh and fo(goh) exist, then

$$(fog) oh = fo (goh)$$

- 54. The composition of two bijections is a bijection i.e. if f and g are two bijections, then gof is also a bijection.
- 55. Let $f: A \to B$, $g: B \to A$ be two functions such that $gof = I_A$. Then, f is an injection and g is a surjection.
- 56. Let $f: A \to B$ and $g: B \to A$ be two functions such that $f \circ g = I_B$. Then, f is a surjection and g is an injection.
- 57. Consider $f: N \to N$, $g: N \to N$ and $h: N \to R$ defined as f(x) = 2x, g(y) = 3y + 4 and $h(z) = \sin z$ for all x, y, $z \in N$. Show that ho (gof) = (hog) of.
- 58. Give examples of two functions $f: N \to Z$ and $g: Z \to Z$ such that gof is injective but g is not injective.
- 59. If $f: R \to R$ and $g: R \to R$ be functions defined by

$$f(x) = x^2 + 1$$
 and $g(x) = \sin x$

then find fog nd gof.

- 60. Uf $f(x) = e^x$ and $g(x) = \log_e x$ (x > 0), find fog and gof. Is fog = gof?
- 61. If $f(x) = f(x) = \sqrt{x}$ ($x \ge 0$) and $g(x) = x^2 1$ are two real functions, find fog and gof. Is fog = gof?
- 62. If $f(x) = \frac{1}{x}$ and g(x) = 0 are two real functions, show that fog is not defined.
- 63. Let f(x) = [x] and g(x) = |x|. Find

(i) (gof)
$$\left(\frac{-5}{3}\right)$$
 - (fog) $\left(\frac{-5}{3}\right)$

(ii) (gof)
$$\left(\frac{5}{3}\right)$$
 - (fog) $\left(\frac{5}{3}\right)$

(iii)
$$(f + 2g) (-1)$$

- 64. Let $f(f(x)) = \frac{2x+1}{2x+3}$ for all $x \in \mathbb{R}, x \neq -\frac{1}{2}, -\frac{3}{2}$
- 65. Let f be a real function defined by $f(x) = \sqrt{x-1}$. Find (fofof) (x).

Also, show that fof $\neq f^2$.

- 66. If $f(x) = \frac{x-1}{x+1}$, $x \ne -1$, then show that $f(f(x)x) = -\frac{1}{x}$ provided that $x \ne 0, -1$.
- 67. Let f be any real function and let g be a function given by g(x) = 2x. Prove that $g \circ f = f + f$.
- 68. If the function $f: R \to R$ be defined by $f(x) = x^2 + 5x + 9$, find $f^{-1}(8)$ and $f^{-1}(9)$.
- 69. Let $f: R \to R$ be defined as $f(x) x^2 + 1$. Find
 - (i) $f^{-1}(-5)$
- (ii) f⁻¹ (26)
- (iii) f^{-1} {10, 37}
- 70. Let $S = \{1,2,3\}$. Determine whether the function $f: S \to S$ defined as below have inverse. Find f
 - (i) f = (1, 1), (2, 2), (3, 3)
 - (ii) $f = \{(1, 2), (2, 1), (3, 1)\}$
 - (iii) $f = \{(1, 3), (3, 2), (2, 1)\}.$
- Consider $f: \{1, 2, 3\} \to \{a, b, c\}$ given by f(1) = a, f(2) = b and f(3) = c. Find the inverse $(f^{-1})^{-1}$ of f^{-1} . Show that $(f^{-1})^{-1} = f$.
- Let $f: R \to R$ be defined by f(x) = 3x 7. Show that f is invertible and hence find f^{-1} .
- Show that $f: R \{0\} \to R \{0\}$ given by $f(x) = \frac{3}{x}$ is invertible and it is inverse of itself.
- 74. Let $f: N \cup \{0\} \rightarrow N \cup (0)$ be defined by

$$f(n) = \begin{cases} n+1, & \text{if n is even} \\ n-1, & \text{if n is odd} \end{cases}$$

Show that f is invertible and $f = f^{-1}$.

- The inverse of a bijection is unique. 75.
- The inverse of a bijection is also a bijection. 76.
- If $f: A \to B$ is a bijection and $g: B \to A$ is the inverse of f, then fog = I_B and gof = I_A , where I_A and $I_{\rm B}$ are identity functions on the sets A and B respectively.
- 78. If $f: A \to B$ and $g: B \to C$ are two bijections, then $gof: A \to C$ is bijection and $(gof)^{-1}og^{-1}$.
- 79. Let $f: A \to B$ and $g: B \to A$ be two functions such that $gof = I_A$ and $fog = I_B$. Then, f and g are
- 80. Let $f: A \to B$ be an invertible function. Show that the inverse of f^{-1} is f. i.e., $(f^{-1})^{-1} = f$.
- 81. Prove that the function $f: R \to R$ defined as f(x) = 2x is invertible. Also, find f^{-1} .
- Show that the function $f: R \to R$ is given by $f(x) = x^2 + 1$ is not invertible. 82.
- If the function $f:[1, \infty)$ defined by $f(x) = 2^{x(x-1)}$ is invertible, find $f^{-1}(x)$.
- 84. Find the value of parameter α for which the function $f(x) = 1 + \alpha x$, $\alpha \neq 0$ is the inverse of itself.
- Let $f: N \to Y$ be a function defined of f(x) = 4x + 3, where
 - Y: $\{y \in N : y = 4x + 3 \text{ for some } x \in N\}$. Show that is invertible. Find its inverse.
- Let $Y = \{n^2 : n \in N\} \subset N$. Consider $f : N \to Y$ given by $f(n) = n^2$. Show that f is invertible. Find

- 87. Let $f: N \to R$ be a function defined as $f(x) = 4x^2 + 12x + 15$. Show that $f: N \to R$ ange (f) is invertible. Find the inverse of f.
- Show that $f: [-1, 1] \to R$, given by $f(x) = \frac{x}{x+2}$ is one-one. Find the inverse of the function $f: [-1, 1] \to R$ 88. $[1, 1] \rightarrow \text{Range (f)}$.
- Range (f): Let $f: R \to R$ be defined as f(x) = 10x + 7. Find the function $g: R \to R$ such that gof $= fog = I_p$.
- 90. Find f^{-1} if it exists : $f : A \rightarrow B$ where
 - (i) $A = \{0, -1, -3, 2\}; B = \{-9, -3, 0, 6\} \text{ and } f(x) = 3x.$
 - (ii) $A = \{1, 3, 5, 7, 9\}; B = \{0, 1, 9, 25, 49, 81\} \text{ and } f(x) = x^2.$
- Let $A = \{1, 2, 3, 4\}$; $B = \{3, 5, 7, 9\}$, $C = \{7, 23, 47, 79\}$ and $f : A \rightarrow B$, $g : B \rightarrow C$ be defined as f(x) = 2x + 1 and $g(x) = x^2 - 2$. Express $(gof)^{-1}$ and f^{-1} og⁻¹ as the sets of ordered pairs and verify that $(gof)^{-1} = f^{-1} og^{-1}$.
- A function $f: R \to R$ is defined as $f(x) = x^3 + 4$. Is it a bijection or not? In case it is a bijection, 92. find f^{-1} (3).
- If $f(x) = \frac{4x+3}{6x-4}$, $x \ne \frac{2}{3}$, show that fof f(x) = x for all $x \ne \frac{2}{3}$. What is the inverse of f?
- Consider $f: R \to R$ given by f(x) = 4x + 3. Show that f is invertible. Find the inverse of f. 94.
- Consider $f: R \to R_{\perp} \to [4, \infty)$ given by $f(x) x^2 + 4$. Show that f is invertible with inverse f^{-1} of f given by $f^{-1}(x) = \sqrt{x-4}$, where R^+ is the set of all non-negative real numbers.
- Consider $f: R_{\perp} \to [-5, \infty)$ given by $f(x) 9x^2 + 6x 5$. Show that f is invertible with $f^{-1}(x) =$ $\frac{\sqrt{x+6}-1}{2}$.
- 97. Consider $f: \{1, 2, 3\} \rightarrow \{a, b, c\}$ and $g: \{a, b, c\} \rightarrow \{apple, ball, cat\}$ defined as f(1) = a, f(2) = af(3) = c, g(a) = apple, g(b) = ball and g(c) = cat. Show that f, g and gof are invertible. Find f^{-1} , g^{-1} 1 and show that $(gof)^{-1} = f^{-1}o g^{-1}$.
- Write total number of one-one functions from set $A = \{1, 2, 3, 4\}$ to set $B = \{a, b, c\}$.
- Let C denote the set of all complex numbers. A function $f: C \to C$ is defined by $f(x) = x^3$. Write f^- 99.
- 100. If $f: C \to C$ is defined by $f(x) = (x-2)^3$, write $f^{-1}(x) 1$
- 101. If $f: R \to R$ defined by f(x) = 3x 4 is invertible then write $f^{-1}(x)$.
- 102. Write the domain of the real function $f(x) = \frac{1}{\sqrt{|x| x}}$.
- 103. What is the range of the function $f(x) = \frac{|x-1|}{|x-1|}$?
- 104. If f: R \rightarrow R be defined by $f(x) = (3 x^3)^{1/3}$, then find fof(x).

EXERCISE-3

1. Which of the following functions from $A = \{x : -1 \le x \le 1\}$ to itself are bijections?

(a)
$$f(x) = \frac{x}{2}$$

(b)
$$g(x) = \sin\left(\frac{\pi x}{2}\right)$$
 (c) $h(x) = |x|$

(c)
$$h(x) = |x|$$

$$(d) k(x) = x^2$$

2. The function $f: R \to R$ defined by

$$f(x) = (x - 1) (x - 2) (x - 3) is$$

- (a) one-one but not onto
- (c) both one and onto

- (b) onto but not one-one
- (d) neither one-one nor onto
- Let $f: R \{n\} \rightarrow R$ be a function defined by

$$f(x) = \frac{x-m}{x-n}$$
, where $m \neq n$. Then

- (a) f is one-one onto
- (c) f is many one onto
- The function $f: R \to R$, $f(x) = x^2$ is 4.
 - (a) injective but not surjective
 - (c) injective as well as surjective

- (b) f is one-one into
- (d) neither one-one nor onto
- (b)surjective but not injective (d) neither injective nor surjective
- Which of the following functions from 5.

$$A = \{x R : -1 \le x \le 1\}$$
 to itself are bijections?

(a)
$$f(x) = |x|$$

(b)
$$f(x) = \sin \frac{\pi x}{2}$$

(c)
$$f(x) = \sin \frac{\pi x}{4}$$

- (d) none of these
- If g (f(x)) = $|\sin x|$ and f(g (x)) = $(\sin \sqrt{x})^2$

(a)
$$f(x) \sin^2 x, g(x) = \sqrt{x}$$

(b)
$$f(x) = \sin x$$
, $g(x) = |x|$

(c)
$$f(x) = x^2$$
, $g(x) = \sin \sqrt{x}$

- (d) f and g cannot be determined
- Let $A = \{x \in R : x \ge 1\}$. The inverse of the function $f : A \to A$ given by $f(x) \ 2^{x(x-1)}$, is

(a)
$$\left(\frac{1}{2}\right)^{x(x-1)}$$

(b)
$$\frac{1}{2} \left\{ 1 + \sqrt{1 + 4 \log_2 x} \right\}$$

(c)
$$\frac{1}{2} \left\{ 1 - \sqrt{1 + 4 \log_2 x} \right\}$$

(d) not defined

- Let $f(x) = \frac{1}{1-x}$. Then |fo(fof)|(x)
 - (a) x for all $x \in R$

(b) x for all $x \in R-\{1\}$

(c) x for all $x \in R - [0, 1]$

- (d) none of these
- If $F: [1, \infty) \to [2, \infty)$ is given by $f(x) = x + \frac{1}{x}$, then $f^{-1}(x)$ equals.

(a)
$$\frac{x + \sqrt{x^2 - 4}}{2}$$

(b)
$$\frac{x}{1+x^2}$$

(c)
$$\frac{x-\sqrt{x^2-4}}{2}$$

(d)
$$x + \sqrt{x^2 - 4}$$

10. Lef $f(x) = \frac{\alpha x}{x+1}$, $x \ne 1$. Then, for what value of α is f(f(x)) = x?

(a)
$$\sqrt{2}$$

(b)
$$-\sqrt{2}$$

$$(d) -1$$

11. If $f: R \to (-1, 1)$ is defined by $f(x) = \frac{-x |x|}{1 + x^2}$, then $f^{-1}(x)$ equals

(a)
$$\sqrt{\frac{|x|}{1-|x|}}$$

(b) - sgn (x)
$$\sqrt{\frac{|x|}{1-|x|}}$$

(c)
$$\sqrt{\frac{x}{1-x}}$$

(d) none of these

12. If $f(x) = \sin^2 x$ and the composite function $g(f(x)) = |\sin x|$, then g(x) is equal to

(a)
$$\sqrt{x-1}$$

(b)
$$\sqrt{X}$$

(c)
$$\sqrt{x+1}$$

(d)
$$-\sqrt{X}$$

13. Let $f: R \to R$ be given by $f(x) = x^2 - 3$. Then, f^{-1} is given by

(a)
$$\sqrt{x+3}$$

(b)
$$\sqrt{x} + 3$$

(c)
$$3 + \sqrt{x}$$

(d) none of these